Weightlessness of photons: A quantum effect
نویسنده
چکیده
The discrepancy between the observed and the expected gravitational redshifts in the Sun are often assumed to be caused by Doppler shifts in the line forming elements. An elaborate system of currents, which was surmised for explaining the discrepancy, has lead to contradictions with observations. Contrary to general belief, the Fraunhofer lines are found to be plasma redshifted and not gravitationally redshifted, when observed on Earth. Quantum mechanical effects cause the photons’ gravitational redshift to be reversed as the photons move from the Sun to the Earth. The designs of the experiments, which were thought to have proven the gravitational redshift of photons, are all in the domain of classical physics, and make it impossible to detect the reversal of the gravitational redshifts. The solar redshift experiments, however, are in the domain of quantum mechanics; and the reversal of the redshift is easily detected, when the plasma redshift is taken into account. The photons are found to be weightless relative to a local observer, but repelled relative to a distant observer. The weightlessness of the photons in the gravitational field relative to a local observer is inconsistent with Einstein’s equivalence principle. This together with the plasma redshift has profound consequences for the cosmological perspectives. This article gives a theoretical explanation of the observed phenomena, proper interpretation of the many gravitational redshift experiments, and an understanding of how we missed observing the reversal of photons’ gravitational redshift. The present analysis indicates that although the photons are weightless in a local system of reference, the experimental evidence indicates that quasi-static electromagnetic fields are not weightless, but adhere to the principle of equivalence.
منابع مشابه
Modulation Response and Relative Intensity Noise Spectra in Quantum Cascade Lasers
Static properties, relatively intensity noise and intensity modulation response in quantum cascade lasers (QCLs) studied theoretically in this paper. The present rate equations model consists of three equations for the electrons density in the conduction band and one equation for photons density in cavity length. Two equations were derived to calculate the noise and modulation response. Calcula...
متن کاملA Non-Demolition Photon Counting Method by Four-Level Inverted Y-Type Atom
The semi-classical model of atom-field interaction has been fully studied for some multilevel atoms, e.g. Vee, L, Cascade X , Y, and inverted Y and so on. This issue is developed into the full-quantum electrodynamics formalism, where the probe and coupling electromagnetic fields are quantized. In this article, we investigate the full-quantum model of absorption and dispersion spectrum of trappe...
متن کاملThe effect of simulated weightlessness and short-term light-dark cycle on retinoic acid levels in serum and hippocampus of rats
Background: spacecrafts rotate around the Earth every 90 minutes, so the 24-hour cycle turns to 90 minutes. Retinoic acid, an active metabolite of vitamin A, plays a role in regulating the circadian rhythm and its deficiency can impair the biological clock function and consequently impair the circadian rhythm of locomotor activity. The goal of the study was to assay the effects of simulated spa...
متن کاملSuper operator Technique in Investigation of the Dynamics of a Two Non-Interacting Qubit System Coupled to a Thermal Reservoir
In this paper, we clarify the applicability of the super operator technique for describing the dissipative quantum dynamics of a system consists of two qubits coupled with a thermal bath at finite temperature. By using super operator technique, we solve the master equation and find the matrix elements of the density operator. Considering the qubits to be initially prepared in a general mixed st...
متن کاملEngineering of core/shell nanoparticles surface plasmon for increasing of light penetration depth in tissue (modeling and analysis)
Objectives: In this article, a new procedure for increasing the light penetration depth in a tissue is studied and simulated. It has been reported that the most important problem in biomedical optical imaging relates to the light penetration depth, and so this makes a dramatic restriction on its applications. In the optical imaging method, the detection of the backscattered pho...
متن کامل